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Abstract—We combine the linear irreversible thermodynamics with 
stochastic energetics and study the stochastic heat engine for a 
Brownian particle confined in a anharmonic Mexican hat potential. 
Under the tight-coupling condition i.e., without heat leakage between 
the system and the reservoirs, we calculate the time at which the 
power is maximum and the corresponding efficiency. 

1. INTRODUCTION 

Carnot engine laid the foundation of thermodynamics, which 
convert heat into work. The efficiency of the Carnot heat 
engine, η 1 ⁄  [1, 2], where  and  ( ), are 
the temperature of the hot and cold reservoirs, respectively. It 
is the maximum efficiency attainable by the heat engines. 
Because of zero power output, Carnot engine has no practical 
use since all real engines have to operate with finite power 
output. 

The efficiency at maximum power output usually have 
practical applications. Using an approximate analyzes, 
Curzon-Alhborn (CA) shown that the efficiency at maximum 
power of a finite-time Carnot heat engine as [3] 

η 1 T T 	⁄ . (1) 

Latter, Van den Broeck [4] studied the generic steady-state 
heat engine at maximum power output by using the linear 
irreversible thermodynamics (LIT) [5]. For a small 
temperature difference between the reservoirs, he obtained 
exactly η  for the tight-coupling condition [6], which has no 
heat leakage between the system and the reservoirs. Many 
models of heat engines and refrigerators were studied within 
the LIT [7-13] and also with the finite size reservoir(s) [14-
17]. 

Recent experimental techniques allow us to investigate the 
small systems [18-21], which shows an eminent statistical 
fluctuation. If we are studying the system consists of a few 
molecules and the total energy of the system is in the order of 

, then the thermal fluctuation can lead to an observable 
large deviation from their average values [22]. 

Using the Langevin equation, Sekimoto developed the 
stochastic energetics [23] to study the stochastic heat engines 
[24, 25]. Microscopic analog of the Carnot heat engine were 
also studied at maximum power output in the overdamped [26] 
and underdamped cases [27]. Rana et al. also studied 
numerically the underdamped and overdamped cases [28]. 
Stochastic energetics also developed from the Kramers 
equation for the underdamped case [27, 29]. 

Many theoretical and experimental studies of stochastic heat 
engines are limited to the time-dependent harmonic oscillator 
[20-22, 24, 26-29] and the time-dependent log-harmonic 
potential [30, 31]. The power and the efficiency of stochastic 
engine also analyzed for the few anharmonic cases 
numerically and shown that the average power output and the 
average efficiency is decreasing while increasing the 
anharmonicity [28]. Their numerical results also showed that 
the efficiency at maximum power is model dependent and 
decreases as the potential becomes harder. In this work, we 
analytically investigate the effect of the time-dependent 
anharmonic Mexican hat potential on the efficiency at 
maximum power of the stochastic heat engines in the 
generalized framework. 

This paper is organized as follows, In Section 2 and 3, we 
briefly review the framework of the linear irreversible 
thermodynamics [4] and stochastic energetics [27]. In Section 
4, we investigate our model system and finally conclude the 
results. 

2. LINEAR IRREVERSIBLE THERMODYNAMICS 

If we consider the situation, where the system performs the 
work on the environment, , where  is the constant 
external force and  is the thermodynamic variable conjugate 
of . Then the power output becomes . Where the 
dot denotes the time derivative of the quantity. We can write 
the thermodynamic force ≡ /  and the flux ≡  for 
the power output as, 	 	  [4]. The heat flux 
≡ , is absorbed by the system from the hot reservoir at 

temperature  and ejects the heat flux  to the cold reservoir 



I. Iyyappan and M. Ponmurugan 
 

 

Journal of Material Science and Mechanical Engineering (JMSME) 
p-ISSN: 2393-9095; e-ISSN: 2393-9109; Volume 3, Issue 8; October-December, 2016 

502

at temperature  corresponding thermodynamic force 
	≡ 	1/ 	 	1/  [4]. In the linear response regime the 

fluxes can be written in terms of the thermodynamic forces as 
[4, 34] 

, (2) 
 

, (3) 
 

where i, j w, h  are the Onsager coefficients. The 
entropy production rate of the reservoirs, 

. (4) 

 

The positivity of the entropy production rate 
0 impose the constraint on the Onsager coefficients, 

0; 0; 0, (5) 
 
with the Onsager reciprocity relation 

, (6) 
 

From Eq. (3) we can rewrite the work flux and the 
corresponding force as 

,  (7) 

 

, (8) 
 

where ≡ ⁄ . The efficiency is given by 

. (9) 
 

From Eqs. (7) and (8), the power and the efficiency can be 
written as 

	 ,  (10) 

 

. (11) 

3. STOCHASTIC ENERGETICS 

A particle immersed in a liquid and confined in one 
dimensional time-dependent potential U x, λ t , which is a 
function of both  and the time-dependent external control 
parameter . The dynamics of a Brownian particle can be 
studied by using the Langevin equation [33], 

; 
,

,   (12) 

 
where  is the mass of a Brownian particle which we set to be 
1,  is the frictional coefficient of the medium,  and  are the 
dynamical variable of the system, respectively, the position 

and its conjugate momentum. 	is random force which is 
assumed to be a Gaussian white noise obeying the relations, 

0; ,  (13) 
 

where 2 ,  is the Boltzmann constant and  is the 
temperature of the reservoir. The symbol ⋯ , denotes the 
average over the ensembles. The Hamiltonian of the system is 
given by 

H U x, λ t .  (14) 

 
The differential of the above Hamiltonian is 

,
λ 	 	 ,  (15) 

 

and the energy difference of the system between the final 
Hamiltonian  to the initial Hamiltonian  is 

∆ ≡ . (16) 
 

The work done by the system is defined as [24, 25] 

≡ λ	 , (17) 

 
and the heat absorbed by the system is 

≡ . (18) 

 
From the law of energy balance [24] 

∆ . (19) 
 

The probability distribution function , ,  of a Brownian 
particle evolves according to the Kramers equation [33] 

. , (20) 

 

, (21) 

 

where ≡ . The average energy difference is given 

as [34], 

∆ | . (22) 

 
The average work done by the system is 

λ	 , (23) 

 

and the average heat absorbed from the medium is given by 
[27], 

.  (24) 
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4. THE EFFICIENCY AT MAXIMUM POWER 
OUTPUT 

We consider a Brownian particle confined in the time-
dependent anharmonic Mexican hat potential and its 
Hamiltonian is given by 

H U x, λ t , k t , (25) 

with 

U x, t λ t x 2	⁄ k t x 4⁄ , (26) 
 

where λ t  and k t  are the external time- dependent control 
parameters. We assume the initial probability distribution of 
the system is Gaussian with mean zero, variance ≡

 and 	 ≡  which is given by 

, exp . (27) 

 
This probability evolves according to the Kramers equation 
(20). Multiplying Eq. (20) by , , and  then integrating 
we get, respectively, the following equations 

0, (28) 
 

2 2 , (29) 
 

λα 3 , (30) 
 

Eq. (28) shows that the width of the position is independent of 
time and the value of the external control parameter. The 
momentum distribution depends on the external control 
parameters through Eq. (30). If  or k t  is increases the 
width of momentum distribution is increase and vice versa. 
The increase (decrease) of the width of momentum 
distribution mimics the increase (decrease) of volume in the 
macroscopic engines. 

Using the above Eq. (29), the time evolution of the variance of momentum  with the initial momentum variance 0  (see appendix
 

. (31) 
 

Using Eq. (24) the rate of heat flow from the hot reservoir to 
the system is obtained as (see appendix B) 

. (32) 
 

Substituting Eqn. (31) in Eq. (32) we get the heat flux as 

. (33) 
 

The system work as a heat engine for  and work as a 
refrigerator for . Under the condition 1, so called 
the tight-coupling condition, the heat leakage term vanishes 
[10, 14] and hence the power and efficiency becomes 

, (34) 
 

. (35) 

It has to be noted from the above equation that for the finite 
heat flux , the efficiency of a heat engine is always less than 
the Carnot efficiency. Substituting Eq. (33) in Eqs. (34) and 
(35), we get the power output and the efficiency as 

, (36) 

 

. (37) 

 
When 	 → 	∞, 	 → 	0 and the efficiency 	 → 	 . 
Optimizing the power output with respect to time, we get the 
optimal time as (see appendix C) 

∗ ln . (38) 

 
Substituting Eq. (38) in Eq. (37), we get the efficiency at 
maximum power as 

∗ . (39) 

 
This result has been obtained for the Brownian particle 
confined in a anharmonic Mexican hat potential. Rana et al. 
numerically shown that, when an anharmonicity is increased 
the efficiency at maximum power is decreases [28]. When we 
incorporating the linear irreversible thermodynamics, our 
analytical result showed that the efficiency at maximum power 
of a single particle stochastic heat engine does not dependence 
on the potential. 

5. CONCLUSION  

We have obtained the efficiency at maximum power of a 
single particle Brownian heat engine confined in a anharmonic 
Mexican hat potential. We used the framework of the linear 
irreversible thermodynamics combined with stochastic 
energetics and showed that for the tight-coupling condition, 
the efficiency at maximum power is independent of the 
confinement potential of the Brownian particle and it is always 
equal to half of the Carnot efficiency. 

APPENDIX A 

Consider the Eqn. (29) 

2 2 , 

solving the above equation using integrating factor, we get 

 

2  

1  

At time 0, 0 , which gives . Therefore 

1 . 
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By rewriting the above equation, we get 

. 

Appendix B 

Starting from Eqns. (24) and (27), 

, 

exp , 

Γ
1
2 . 

Using the above Gamma integration first integrating with 
respect to , we get 

√2
exp

2
 

again integrating with respect to , we get 

. 
 

APPENDIX C 

Let  in Eqn. (36), the power becomes 

, 
maximizing with respect to , we get 

  

from above equation we get the optimized time 

∗ ln , 
 

substituting above ∗	in equation (37), we get 

∗

2
. 
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